
 International Journal of Computer Trends and Technology Volume 71 Issue 7, 15-21, July 2023

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V71I7P103 © 2023 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

 Optimizing Database Performance: Strategies for

Efficient Query Execution and Resource Utilization

Vivek Basavegowda Ramu

Independent Researcher, Connecticut, USA

Corresponding Author : vivekgowda.br@gmail.com

Received: 18 May 2023 Revised: 25 June 2023 Accepted: 08 July 2023 Published: 27 July 2023

Abstract - In today's world, which is highly driven by data, where information serves as a lifeblood of organizations,

optimizing database performance is of utmost importance. Effective query management and resource management are critical

to optimize system performance and ensure the best possible user experience. This paper explores various methods and

techniques for improving the performance of databases without compromising data integrity or security. Drawing on extensive

research and expert insights, we delve into the intricacies of query execution optimization. We examine various approaches,

such as query rewriting, indexing, and caching, to minimize query response times and improve overall system throughput. By

leveraging these techniques, database administrators and developers can fine-tune query execution plans, reducing the need

for resource-intensive operations and enhancing overall system efficiency. Resource utilization plays a critical role in

maximizing database performance. We delve into strategies for effective resource management, including memory allocation,

disk I/O optimization, and parallel processing. Through careful resource allocation and optimization, databases can better

handle concurrent requests, reduce bottlenecks, and achieve higher throughput. To address the challenges of growing data

volumes, we explore techniques for data partitioning, sharding, and replication. These strategies enable horizontal scaling,

distributing the data across multiple servers and allowing for efficient parallel processing. We also investigate the impact of

database schema design on performance and discuss best practices for schema optimization, including normalization,

denormalization, and data aggregation. The paper also delves into the realm of performance monitoring and tuning. We

discuss the importance of regular performance profiling, identifying system bottlenecks, and optimizing database

configurations. It is possible for the database administrator to proactively identify the areas of improvement and implement

targeted optimization, which will result in peak performance of the database by monitoring key metrics like query execution

time, CPU usage, and disk I/O rates. The study targets to present a comprehensive overview of strategies and techniques which

is required for optimizing database performance. By adopting these strategies, organizations can unleash the full capabilities

of their databases, ensure query execution efficiency, maximize resources, and deliver exceptional performance to consume a

modern application meeting the ever-increasing demands of data-driven types.

Keywords - Database performance, Query execution, Resource utilization, Optimization strategies, Efficient database.

1. Introduction
Databases have revolutionized the way organizations

process, store, and retrieve large amounts of data (Shao et al.,

2015). Databases have evolved phenomenally from the early

days of manual record-keeping to today's sophisticated

relational database systems. This evolution is driven by

increasing data complexity and variety and increased

demands for efficient data processing and retrieval.

Performance is at the core of this progress and has been

crucial in determining the course of database technology

(Saleh Maabreh, 2018). In the context of databases,

performance refers to a system's capacity to effectively

manage queries, carry out transactions, and promptly respond

to user requests. Performance optimization has arisen as a

crucial challenge for enterprises across sectors as databases

have grown more widespread and essential to multiple

applications (Zhang, 2016). These days in an effort to

achieve higher performance, researchers, developers, and

administrators have been exploring numerous tactics and

ways to improve the speed, scalability, and efficiency of

database operations. A database management system

(DBMS) is software created to make accessing, storing,

manipulating, and safeguarding stored data easier. It enables

users to define, store, and manipulate information effectively

while safeguarding against system failures and unauthorized

access by implementing varying access permissions for

different users. Figure 1 showcases the architecture of

DBMS (Structure of Database Management System -

GeeksforGeeks, 2020).

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Vivek Basavegowda Ramu / IJCTT, 71(7), 15-21, 2023

16

Why is performance optimization so crucial in the realm

of databases? The answer lies in the ever-increasing volume,

velocity, and variety of data being generated and processed.

With the exponential growth of data, database systems face

immense challenges in ensuring fast query execution,

efficient resource utilization, and seamless scalability. A

poorly performing database can lead to decreased

productivity, degraded user experience, and even financial

losses for businesses. Efficient performance optimization

addresses these challenges by identifying and eliminating

bottlenecks, streamlining query operations, and maximizing

the use of system resources (Ramu, 2023). By optimizing

database performance, organizations can significantly

improve response time, throughput, and overall system

efficiency. This, in turn, enables companies to manage

complex service-level contracts, manage large application

loads, and gain a competitive edge in today's data-driven

environment.

Moreover, performance optimization goes hand in hand

with user satisfaction and productivity. In an era where speed

and responsiveness are expected, users have little tolerance

for slow or unresponsive systems. By optimizing database

performance, organizations can deliver seamless, real-time

access to critical information, ensuring that users can make

informed decisions swiftly and efficiently (Muniswamaiah et

al., 2019). Whether it is an e-commerce platform, healthcare

system, or financial application, database performance

directly affects user satisfaction and, consequently, the

success of the underlying business. We explore different

approaches, techniques and best practices to meet the

challenges of high data volumes, complex queries and

diverse tasks. Through in-depth research into query

execution, resource utilization and scalability, we aim to

provide actionable insights and suggestions for improving

database performance. Optimal database performance

organizations can unlock the full potential of their data

assets, ensuring faster insights, improved decision-making

and a competitive edge in today's data-intensive world.

Through this research, we hope to contribute to ever-

improving database performance excellence to help

administrators and researchers achieve better database

performance.

Fig. 1 DBMS architecture

Database
Schema

DDL

Compiler

Queries

Query

 Processor

Application
Programs

DML

Compiler

Data Dictionary

Manager

Query
Optimizer

Scheduler

Recovery

Manager

Command

Processor

Authorization

Control

Transaction

Manager

Buffer
Manager

Integrity

Checker

Data

Manager

Database
Manager

Application
Programs Users DBA

D
B

M
S

Data Files

+

Data Dictionary

Text

Vivek Basavegowda Ramu / IJCTT, 71(7), 15-21, 2023

17

2. Literature Review
(Klein et al., 2015) presents a study on selecting a

NoSQL database for a distributed healthcare organization,

considering factors such as consistency, availability, and

partition tolerance. The results highlight significant

variations in throughput and latency among different

database products, where the highest throughput product

exhibited the highest latency. Additionally, attaining strong

consistency decreased throughput in comparison to eventual

consistency. However, the paper does not extensively

discusses other quality factors that influence the selection

decision, limiting its comprehensive evaluation of NoSQL

database performance for the healthcare organization.

In another study, (Murazzo et al., 2019) evaluated the

performance of a cloud-based NewSQL database as opposed

to a MySQL database, specifically measuring response time

under different workload configurations. NewSQL databases

aim to provide scalable performance for online transaction

processing (OLTP) workloads while maintaining the ACID

guarantees of traditional databases. The paper discusses the

challenges posed by big data, the characteristics and

challenges of big data, and the connection between cloud

computing and big data. It also introduces NoSQL and

NewSQL databases as solutions for managing big data,

where NewSQL databases for NoSQL and the ACID

scalability property of traditional databases. However, the

paper does not provide a detailed analysis of the test results

or discuss any specific shortcomings or limitations of the

NewSQL database being evaluated.

(Myalapalli et al., 2015) discussed the need for

maintaining and improving database performance due to the

exponential growth in database size. It also proposes an idea

that serves as a benchmark for database administration and

efficient query tuning, ultimately resulting in enhanced

database performance. The paper presents a variety of

techniques to speed up the query and improve overall

database performance, making it a valuable resource for SQL

programmers, database developers, data center managers and

administrators, but the paper does not address potential

limitations or shortcomings of the suggested approach.

One more study (Kabakus & Kara, 2017) focused on the

increasing popularity of NoSQL databases and their

advantages, such as quickly processing large amounts of

data, flexible data structures, and high performance. It

examines the memory usage of these databases and compares

their performance in terms of operation completion time and

memory efficiency. The study highlights that there are more

than 225 NoSQL databases that have different features; also,

it is crucial to determine which of them performs superior for

the various data operations. The results show that no single

database provides optimal performance for all tasks.

Although a relational database management system (RDMS)

stores data in memory, its overall performance is lower than

NoSQL databases. However, the paper does not discuss

possible limitations or shortcomings of the tests.

3. Methodology
It is vital to have techniques and strategies that enhance

performance without compromising data integrity or

security. Efficient database performance ensures timely

access to information, improves user experience, and enables

organizations to meet demanding service-level agreements.

This methodology section outlines the key steps we followed

to investigate and explore various strategies for optimizing

database performance.

3.1. Query Execution Optimization

Query execution optimization is a critical aspect of

enhancing database performance (Kamatkar et al., 2018).

Indexing played a vital role in our quest for improved query

execution, and query tuning is one the first aspects to focus

on the overall performance improvement in databases (Sun et

al., 2018). By creating indexes on specific columns or

combinations of columns, we can create data structures that

facilitate rapid data retrieval. Indexes allowed the database

system to quickly locate and access relevant data,

minimizing the need for full table scans. With indexes in

place, query response times were significantly reduced,

enabling faster query execution and improved overall system

performance. Caching mechanisms emerged as another

powerful tool for query execution optimization. By caching

frequently accessed data, we can reduce the need to

repeatedly retrieve the same information from a disk or

perform complex computations. The cached data was stored

in memory, which offered faster access times compared to

disk-based storage. This approach proved particularly

effective in scenarios where queries exhibited repetitive

patterns or when multiple users or applications accessed the

same data frequently. By leveraging caching, we witnessed

substantial improvements in query response times and a

boost in the system's throughput. Also, our study considered

the trade-offs associated with query execution optimization

techniques. While query rewriting, indexing, and caching

offered significant performance gains, they required careful

consideration (Huong & Hoang, 2022). Query rewriting

could introduce complexities in managing the modified

queries and ensuring their compatibility with the

application's business logic. Indexing required thoughtful

selection of the appropriate columns and careful maintenance

to avoid excessive overhead. Caching required managing

cache consistency and handling updates to the underlying

data.

3.2. Effective Resource Management

Memory plays a vital role in database operations, as it

serves as a fast and accessible storage medium for frequently

accessed data and query execution plans. Figure 2 showcases

a typical execution plan structure of a SQL server. We

Vivek Basavegowda Ramu / IJCTT, 71(7), 15-21, 2023

18

examined techniques to optimize memory allocation,

ensuring the available memory was efficiently utilized. This

involved careful consideration of buffer pool sizes, caching

mechanisms, and memory allocation policies. By fine-tuning

memory allocation, we aimed to minimize unnecessary

memory overhead and maximize the amount of memory

dedicated to critical database operations, resulting in

improved overall performance. Disk I/O optimization was

another critical aspect (HoseinyFarahabady et al., 2021) of

our investigation. Disk access times can be a significant

performance bottleneck in database systems, as disk

operations are inherently slower compared to memory

operations. By employing various techniques such as

intelligent caching, read-ahead, and write-batching, we

aimed to minimize disk I/O operations and reduce latency.

Through careful configuration and optimization of disk I/O

operations, we can significantly enhance overall system

responsiveness and throughput. Parallel processing

techniques were also explored to maximize the utilization of

system resources.

In modern database systems, leveraging multiple

processors or cores can significantly improve performance

by allowing concurrent execution of multiple operations. We

investigated parallel query processing, parallel indexing, and

parallel data loading techniques. By partitioning tasks and

distributing them across available resources, we aimed to

exploit parallelism and achieve higher levels of concurrency.

This approach not only reduced the overall execution time

but also utilized system resources more effectively, resulting

in improved throughput and scalability. While optimizing

resource management, we took into account potential trade-

offs. For example, aggressive memory allocation

optimization may increase the risk of memory contention or

evictions, leading to performance degradation. Similarly,

intensive parallel processing might introduce additional

overhead in terms of coordination and synchronization.

Therefore, a careful balance between resource utilization and

potential drawbacks was considered during our investigation.

Fig. 2 SQL Query execution plan

3.3. Techniques for Data Partitioning, Sharding, and

Replication

We explored techniques such as data partitioning,

sharding, and replication to address the challenges posed by

growing data volumes. Data partitioning allowed us to divide

large datasets into smaller, manageable portions, enabling

efficient parallel processing across multiple servers

(Gruenwald & Eich, 1993). Sharding involves distributing

data across multiple nodes or servers, allowing horizontal

scaling and improved performance. Replication strategies

were also considered to ensure data redundancy, fault

tolerance, and increased read performance. Figure 3

showcases the data partitioning where partitioned schema

hosts a subset of the data based on the month.

Fig. 3 Cycle of continuous performance testing

3.4. Best Practices for Database Normalization

Normalization is a process aimed at organizing data in a

database to eliminate redundancy and ensure data integrity

(Mendjoge et al., 2016). By breaking down data into smaller,

logically related tables and applying normalization rules, we

aimed to minimize data duplication. This approach not only

reduced storage requirements but also improved data

consistency and simplified data management. Normalization

played a crucial role in enhancing data integrity and provided

a solid foundation for efficient storage and retrieval.

Denormalization techniques were explored to improve query

performance by reducing the need for complex joins. In

certain scenarios, denormalizing tables by incorporating

redundant data or duplicating selected columns can improve

query execution times. By doing so, our goal was to reduce

the number of table joins required, reduce computational

cost, and improve query response time. However, it is crucial

to consciously understand the trade-offs linked with

denormalization, such as increased storage requirements and

possible data inconsistencies. Data aggregation strategies

were also investigated in our study. Aggregation involves

precomputing and storing summarized data, which can

significantly expedite query execution for analytical

workloads. By aggregating data at different levels of

granularity, such as daily, weekly, or monthly summaries, we

aimed to reduce the quantity of data that needs to be handled

during query execution. This approach enabled faster

retrieval of summarized results, particularly for complex

queries involving large datasets. Data aggregation proved

beneficial for decision support systems and reporting

Select

Cost: 0%

Nested Loop

Cost: 2%
Index Scan

Cost: 5%

Index Scan

Cost: 93%

Top

Cost: 0%

Big Table

Section

Section

Section

May 2019

June 2019

July 2019

File

Group

May 2019

File

Group

June 2019

File

Group

July 2019

Partitioning Function Partitioning Schema

Vivek Basavegowda Ramu / IJCTT, 71(7), 15-21, 2023

19

applications, where fast query response times are crucial. It is

needed to understand that the selection of an optimization

system will have to be based on the particular needs and

intended use of the database Normalization, denormalization,

and data aggregation are not mutually exclusive, and a

combination of these techniques may be appropriate

depending on the nature of the data and the types of queries

expected to be executed.

3.5. Performance Monitoring and Tuning

The process of performance monitoring involves

tracking key performance metrics to gain a detailed

understanding of the database system behavior (Bagade et

al., 2012). We focused on key metrics like query execution

time, CPU usage, and disk I/O rates. By collecting and

analyzing these metrics over time, it is possible to identify

patterns, look for anomalies, and pinpoint areas of potential

performance bottlenecks. We gained valuable insights into

system health and performance characteristics through

performance monitoring. Tuning options were explored

based on the insights gained from performance monitoring.

We undertook various optimization strategies to address

identified bottlenecks and enhance system performance.

Database configurations should be carefully adjusted to align

with the specific workload requirements and resource

availability.

This included fine-tuning parameters related to memory

allocation, disk I/O, and query optimization. By optimizing

these configurations, we aimed to achieve a better balance

between resource utilization and performance. Another

crucial aspect of performance tuning was query plan

optimization. It is important to analyze and optimize the

execution plans generated by the database optimizer to

ensure efficient query execution. This involved examining

query access paths join algorithms, and index utilization. By

identifying suboptimal query plans, techniques such as index

hints, query rewriting, or introducing additional indexes can

be applied to improve query performance. Query plan

optimization played a significant role in reducing query

execution time and enhancing overall system responsiveness.

Additionally, performance-enhancing settings also help to

fine-tune the database system. This included optimizing

buffer pool sizes, disk caching policies, and parallelism

settings. By aligning these settings with the workload

characteristics and system resources, we aimed to maximize

performance gains while maintaining data integrity and

security. It is important to note that performance monitoring

and tuning are ongoing processes (Calzarossa et al., 2021).

As workload patterns and system requirements evolve, it is

necessary to continuously monitor performance metrics,

identify new challenges, and apply appropriate tuning

strategies. By regularly reviewing and adjusting the database

system, organizations can ensure that it consistently meets

performance expectations and adapts to changing demands.

4. Results
Our research yielded significant findings that shed light

on improving database performance through various

optimization strategies. In terms of query execution

optimization, we found that the application of query

rewriting techniques results in more efficient execution

plans, leading to reduced response times. We can achieve

substantial performance gains by restructuring queries to

eliminate redundant operations and optimizing join

sequences. Indexing played a crucial role as well, with

indexed tables demonstrating significantly faster data

retrieval and query processing. Caching mechanisms further

contributed to improved performance by holding constantly

accessed data in memory, resulting in a reduction of the disk

I/O operations. In terms of resource management, our

findings highlighted the importance of effective memory

allocation. By fine-tuning memory settings and optimizing

buffer pool sizes, we can maximize memory utilization and

minimize unnecessary overhead. This leads to improved

system responsiveness and reduced memory-related

performance bottlenecks. Disk I/O optimization techniques,

such as intelligent caching and read-ahead mechanisms,

significantly reduced disk access times, resulting in faster

data retrieval and query execution. Also, parallel processing

techniques proved valuable in leveraging system resources

and achieving higher levels of concurrency, leading to

improved system throughput.

Our study also examined the impact of schema

optimization techniques on performance. Normalization was

vital in reducing data redundancy and ensuring data integrity,

resulting in more efficient storage and retrieval.

Denormalization, when applied judiciously, improved query

performance by reducing the need for complex joins. Data

aggregation strategies, such as precomputing and storing

summarized data, facilitate faster execution of analytical

queries, particularly in decision support systems and

reporting applications. Our research provides practical

insights and actionable recommendations for organizations

seeking to optimize their database performance. By

implementing the identified strategies and techniques,

organizations can expect improved query response times,

enhanced system throughput, and overall better performance.

These observations are especially important in the context of

data-intensive applications, where fast and efficient data

processing is critical.

There are many possibilities for future research and

development on optimizing database performance. One area

of interest is incorporating machine learning and artificial

intelligence into strategic query optimization. Advanced

algorithms can be used to automate query rewriting,

indexing, and resource allocation, further improving

performance and reducing the manual effort required for

optimization. Also, the impact of emerging technologies,

such as in-memory databases and distributed computing

Vivek Basavegowda Ramu / IJCTT, 71(7), 15-21, 2023

20

architectures, on performance optimization warrants further

investigation. These technologies offer unique opportunities

for achieving even higher levels of performance and

scalability. Exploring how these technologies can be

effectively integrated into existing database systems and

understanding their implications for performance would be

valuable. A fascinating area for future research is

performance optimization in distributed and multi-cloud

contexts, another factor in the growing popularity of

distributed databases and cloud computing. In addition to

researching the trade-offs among availability, consistency,

and performance in distributed database systems, this entails

investigating methods for effective data partitioning, load

balancing, and replication over numerous servers or cloud

instances.

5. Conclusion
This paper provides a detailed description of methods

and techniques for optimizing database performance. By

adopting these methods, this paper distinguishes itself in

many ways from research in the literature review that enables

organizations to unleash the full potential of their databases,

ensure that the queries are used effectively, use resources

efficiently, and deliver exceptional performance to meet the

ever-increasing demands for modern data-driven

applications. First, it involves query optimization, resource

management, data partitioning, schema optimization,

performance management and tuning. This paper offers a

holistic approach to optimizing database performance by

exploring these diverse areas. Secondly, this paper goes

beyond mere theoretical discussions and provides practical

insights and recommendations for implementing the

discussed techniques. It acknowledges the potential trade-

offs and challenges associated with each optimization

strategy, allowing practitioners to make informed decisions

based on their specific requirements. This paper emphasizes

the importance of balancing performance improvements with

data integrity and security. It recognizes that optimizing

database performance should not come at the expense of

compromising critical aspects such as data consistency and

protection. By addressing these concerns, this paper offers a

robust framework for organizations to achieve optimal

performance while maintaining the integrity and security of

their data. This paper also highlights the significance of

continuous monitoring and tuning as ongoing processes. This

study clearly identifies that performance optimization is not a

one-time effort but requires regular assessment, adjustment,

and adaptation to constantly changing workload patterns and

system requirements. By emphasizing the importance of

continuous improvement, this paper ensures that

organizations can maintain and improve their database

performance over a prolonged time. This study is a valuable

resource for organizations, database administrators,

developers, and researchers looking to optimize database

performance. By implementing the methods and techniques

outlined in this paper, organizations can overcome the

challenges posed by high data volumes, complex queries, and

diverse workloads.

References
[1] Jingbo Shao et al., “Database Performance Optimization for SQL Server Based on Hierarchical Queuing Network Model,” International

Journal of Database Theory and Application, vol. 8, no. 1, pp. 187–196, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[2] Khaled Saleh Maabreh, “Optimizing Database Query Performance Using Table Partitioning Techniques,” International Arab

Conference on Information Technology, pp. 1-4, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[3] Jiangang Zhang, “Research on Database Application Performance Optimization Method,” Proceedings of the 2016 6th International

Conference on Machinery, Materials, Environment, Biotechnology and Computer, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[4] Structure of Database Management System – Geeks for Geeks, 2020. [Online]. Available: https://www.geeksforgeeks.org/structure-of-

database-management-system/

[5] Vivek Basavegowda Ramu, “Performance Impact of Microservices Architecture,” The Review of Contemporary Scientific and

Academic Studies, vol. 3, no. 6, 2023. [CrossRef] [Publisher Link]

[6] Manoj Muniswamaiah, Dr. Tilak Agerwala, and Dr. Charles Tappert, “Query Performance Optimization in Databases for Big Data,” 9th

International Conference on Computer Science, Engineering and Applications, pp. 85-90, 2019. [CrossRef] [Publisher Link]

[7] John Klein et al., “Performance Evaluation of NoSQL Databases: A Case Study,” Proceedings of the 1st Workshop on Performance

Analysis of Big Data Systems, pp. 5-10, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[8] María Murazzo et al., “Database NewSQL Performance Evaluation for Big Data in the Public Cloud,” Communications in Computer

and Information Science, vol. 1050, pp. 110–121, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[9] Vamsi Krishna Myalapalli, Thirumala Padmakumar Totakura, and Sunitha Geloth, “Augmenting Database Performance via SQL

Tuning,” International Conference on Energy Systems and Applications, pp. 13-18, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[10] Abdullah Talha Kabakus, and Resul Kara, “A Performance Evaluation of In-Memory Databases,” Journal of King Saud University -

Computer and Information Sciences, vol. 29, no. 4, pp. 520–525, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[11] Sadhana J. Kamatkar et al., “Database Performance Tuning and Query Optimization,” Data Mining and Big Data, pp. 3–11, 2018.

[CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.14257/ijdta.2015.8.1.19
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Database+Performance+Optimization+for+SQL+Server+Based+on+Hierarchical+Queuing+Network+Model&btnG=
http://article.nadiapub.com/IJDTA/vol8_no1/19.pdf
https://doi.org/10.1109/acit.2018.8672584
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimizing+Database+Query+Performance+Using+Table+Partitioning+Techniques&btnG=
https://ieeexplore.ieee.org/document/8672584
https://doi.org/10.2991/mmebc-16.2016.448
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Research+on+Database+Application+Performance+Optimization+Method&btnG=
https://www.atlantis-press.com/proceedings/mmebc-16/25859012
https://doi.org/10.55454/rcsas.3.06.2023.010
https://thercsas.com/wp-content/uploads/2023/06/rcsas3062023010.pdf
https://doi.org/10.5121/csit.2019.90908
https://aircconline.com/csit/papers/vol9/csit90908.pdf
https://doi.org/10.1145/2694730.2694731
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+Evaluation+of+NoSQL+Databases%3A+A+Case+Study&btnG=
https://dl.acm.org/doi/10.1145/2694730.2694731
https://doi.org/10.1007/978-3-030-27713-0_10
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Database+NewSQL+Performance+Evaluation+for+Big+Data+in+the+Public+Cloud&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-27713-0_10
https://doi.org/10.1109/icesa.2015.7503305
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Augmenting+database+performance+via+SQL+tuning&btnG=
https://ieeexplore.ieee.org/document/7503305
https://doi.org/10.1016/j.jksuci.2016.06.007
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Performance+Evaluation+of+In-Memory+Databases&btnG=
https://www.sciencedirect.com/science/article/pii/S1319157816300453
https://doi.org/10.1007/978-3-319-93803-5_1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Database+Performance+Tuning+and+Query+Optimization&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-93803-5_1

Vivek Basavegowda Ramu / IJCTT, 71(7), 15-21, 2023

21

[12] Xiaoxiao Sun, Bing Jiang, and Xianda He, “Database Query Optimization Based on Distributed Photovoltaic Power Generation,” 2nd

IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, pp. 2382-2386, 2018.

[CrossRef] [Google Scholar] [Publisher Link]

[13] Nguyen Thanh Huong, and Le Minh Hoang, “Database Querying Optimization via Genetic Algorithm for Biomedical Research,” 7th

International Conference on Systems, Control and Communications, pp. 6-11, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[14] Mohammad Reza Hoseiny Farahabady et al., “Enhancing Disk Input Output Performance in Consolidated Virtualized Cloud Platforms

using a Randomized Approximation Scheme,” Concurrency and Computation: Practice and Experience, vol. 34, no. 2, 2022.

[CrossRef] [Google Scholar] [Publisher Link]

[15] Le Gruenwald, and Margaret H. Eich, “Selecting a Database Partitioning Technique,” Journal of Database Management, vol. 4, no. 3,

pp. 27–39, 1993. [CrossRef] [Google Scholar] [Publisher Link]

[16] Neha Mendjoge, Abhijit R. Joshi, and Meera Narvekar, “Intelligent Tutoring System for Database Normalization,” International

Conference on Computing Communication Control and Automation, pp. 1-6, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[17] Prasanna Bagade, Ashish Chandra, and Aditya B. Dhende, “Designing Performance Monitoring Tool for NoSQL Cassandra Distributed

Database,” International Conference on Education and E-Learning Innovations, pp. 1-5, 2012. [CrossRef] [Google Scholar] [Publisher

Link]

[18] Maria Carla Calzarossa, Luisa Massari, and Daniele Tessera, “Performance Monitoring Guidelines,” Companion of the ACM/SPEC

International Conference on Performance Engineering, pp. 109-114, 2021. [CrossRef] [Publisher Link]

https://doi.org/10.1109/imcec.2018.8469696
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Database+Query+Optimization+Based+on+Distributed+Photovoltaic+Power+Generation&btnG=
https://ieeexplore.ieee.org/document/8469696
https://doi.org/10.1145/3575828.3575830
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Database+Querying+Optimization+via+Genetic+Algorithm+for+Biomedical+Research&btnG=
https://dl.acm.org/doi/10.1145/3575828.3575830
https://doi.org/10.1002/cpe.6247
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+Disk+Input+Output+Performance+in+Consolidated+Virtualized+Cloud+Platforms+using+a+Randomized+Approximation+Scheme&btnG=
https://onlinelibrary.wiley.com/doi/10.1002/cpe.6247
https://doi.org/10.4018/jdm.1993070103
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Selecting+a+Database+Partitioning+Technique&btnG=
https://www.igi-global.com/gateway/article/51123
https://doi.org/10.1109/iccubea.2016.7860013
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Intelligent+tutoring+system+for+Database+Normalization&btnG=
https://ieeexplore.ieee.org/document/7860013
https://doi.org/10.1109/iceeli.2012.6360579
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Designing+performance+monitoring+tool+for+NoSQL+Cassandra+distributed+database&btnG=
https://ieeexplore.ieee.org/document/6360579
https://ieeexplore.ieee.org/document/6360579
https://doi.org/10.1145/3447545.3451195
https://dl.acm.org/doi/10.1145/3447545.3451195

